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Abstract. We present our latest findings on the status of factorisation in heavy ion collisions.
We show that energy loss calculations that assume factorisation yield results consistent with
factorisation: the leading order in energy asymptotics for the mean transverse momentum
squared picked up by a high energy particle propagating through a quark-gluon plasma is double
logarithmic. Further, the leading order behaviour for the difference in jet sizes in medium vs. in
vacuum is negative; i.e. we predict jet narrowing in heavy ion collisions. This qualitative result
is consistent with recent experimental measurements.

1. Introduction
A microsecond after the Big Bang the universe cooled to a chilly trillion degrees, at which point 
all of space was filled w ith a  n ovel s tate o f m atter: t he q uark-gluon p lasma ( QGP). A s the 
universe continued to cool and expand, the dynamics of this early stage of its history imprinted 
itself; further dynamics then propagated these inital conditions to the large-scale structure of 
the universe as we know it today.

From a theoretical perspective, the non-trivial, emergent many-body dynamics of quantum 
field t heories i s a n a ctive a nd i nteresting o pen a rea o f r esearch [ 1–4]. E ven “ simple” systems 
that depend only on the Abelian electromagnetic force show a wealth of extremely important 
behaviours that are currently not well understood from first p rinciples: e.g. the phase structure 
of water [5] or high temperature superconductivity [6]. We’re naturally led to consider the non-
Abelian generalisation of many-body dynamics in quantum field t heories i n o rder t o compare 
and contrast with the Abelian case and also because the non-Abelian case may be in some ways 
richer and in some ways simpler than the Abelian one [1–4, 7].

Experimentally, incredibly, we have the ability to probe these non-trivial, emergent, many-
body dynamics of a non-Abelian theory and also the physics of the early universe through heavy 
ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider 
(LHC). One of the most important experimental tools for investigating the properties of the 
QGP produced in these heavy ion collisions is known as “hard probes” [8]. Hard probes are 
particles with a large scale (mass or energy) that are produced in the initial overlap of nuclei 
in these nuclear collisions. These particles subsequently propagate through the medium created 
by the collisions. The idea is that measuring the difference in distribution of these particles 
in heavy ion collisions compared to the distribution of these particles when produced in much 
smaller collision systems (in angle, momentum, etc.) will provide insight into the properties of 
the QGP.
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In order to connect the measured distribution of particles to properties of the QGP, we need
theoretical calculations. For the particular case of hard probes, one avenue is to assume that the
hard probes is weakly coupled to a weakly coupled QGP medium. One then derives expressions
for the amount of energy lost from the hard probe to the QGP as the probe propagates through
the medium [9–17]. Phenomenological models built on these energy loss calculations have shown
great success in describing experimental data [18–20]. One important avenue for research going
forwards is to put these energy loss derivations on more solid theoretical footing. In particular,
it’s important to understand how the corrections to the current leading order results might scale
with, e.g., the energy of the probe.

2. Factorisation in QCD
In many simpler QCD systems, e.g. deep inelastic scattering (DIS), semi-inclusive deep inelastic
scattering (SIDIS), Drell-Yan production (DY), etc., theoretical predictions are known to be of
a factorised form [21]. These factorised formulae share two important aspects. First, the high-
energy (or hard scale), short distance physics is factorised from the low-energy, non-perturbative
physics. Second, it’s known that the corrections to these factorised formulae are down by a very
large energy scale ∼ 1/Q2, Q � ΛQCD, where ΛQCD characterises the energy scale at which
non-perturbative physics sets in in QCD. What we would like to do, then, is work towards a
factorised form for energy loss calculations in heavy ion collisions.

As a first step in that programme, we would like to compare a result computed within the
factorised approach and one within the energy loss approach. One such observable is the mean
transverse momentum squared picked up by the hard probe as it propagates through the medium,
〈p2

T 〉. The factorised approach to this SIDIS-type calculation has been computed to next-to-
leading order accuracy [22, 23], which is to say up to corrections including radiative (energy loss)
emissions. Similar to other factorised DIS and SIDIS calculations [21], this factorised approach
yields a type of parton distribution function with DGLAP-like evolution equations induced by
the NLO contributions. Since the leading order contribution is from elastic scattering and should
grow like log(E), we expect that the evolution equations will lead to an additional logarithmic
growth in energy. While an explicit calculation has not been performed yet, we thus expect an
overall log2(E) dependence from the factorised approach for ∆〈p2

T 〉, the difference in transverse
momentum squared picked up by the parton in medium minus the transverse momentum picked
up by the parton through vacuum radiation emissions. In the following, we investigate the
leading energy asymptotics of 〈p2

T 〉 as computed within the energy loss approach.

3. Energy Loss at High Energy
In the limit of massless particles and the soft and collinear emission of gluon radiation off of a
high-energy parton propagating through a weakly-coupled QGP, the single inclusive distribution
of emitted radiation in medium (minus the radiation emitted by a hard scattering in vacuum)
is given by [11]:

dNg

dxd2kTd2qT
= C

2
R

π

α
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2kT · qT (kT − qT )2

(4xE/L)2 + (kT − qT )4 , (1)

where CR is the colour Casimir relevant for the gluon or quark parton, qT is the transverse
momentum picked up by the parton from the medium, x is the (lightcone plus) momentum
fraction taken by the emitted gluon from the parton, kT is the transverse momentum of the
emitted gluon, L ∼ 5 fm is the length of the plasma traversed by the parton, λ ∼ 1 fm is the
mean free path of a gluon in the plasma, and µ ∼ 0.5 GeV is the Debye mass of the plasma.
The upper bound of the qT integration is set to qmax ≡

√
3µE, which is the kinematic bound

for elastic 2→ 2 scattering of two massless particles, one with energy E and one with a thermal
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momentum of ∼ 3µ. The upper bound of the kT integration is kmax ≡ 2x(1 − x)E, which 
ensures that the emission of the radiation is approximately collinear.

Note that because equation (1) is a difference in radiation distributions, there are regions of 
phase space for which dNg/dxd2kT d

2qT < 0, indicating the importance of quantum mechanical 
destructive interference in the QGP case: the presence of the QGP medium suppresses the 
emission of radation in some cases, leading to less overall radiation than when the medium is 
not present.

Since equation (1) is a single inclusive distribution, the number of emitted gluons is not fixed 
(CITE multigluon). (For the typical values of µ, L, and λ quoted above, the total number of 
emitted gluons is ∼ 3.) Thus when we compute the ∆〈p2

T 〉 of the emitted parton, we should 
simply compute:

∆〈p2
T 〉 ≡ 〈p2

T 〉QGP − 〈p2
T 〉vacuum =

∫
dxd2kTd

2qT (kT − qT )2 dNg

dxd2kTd2qT
. (2)

4. Asymptotic Analysis
Numerical evaluation of equation (2) is difficult. While the integral converges, the integral
only barely converges. The reason the integral only barely converges is that the integrand is
composed of several terms. If the separate terms are integrated individually, they diverge. Only
when the terms are integrated together are there the correct, delicate cancellations needed for
the total integral to converge. It’s generally difficult for numerical integration routines to fully
capture such a delicate cancellation. An analytic handle on the result is therefore desirable. One
approach to approximating equation (2) is to perform a change of variables to q′ ≡ kT−qT . This
shift in integration variables significantly simplifies the integrand at the cost of complicating the
integration region. The integral is broken up into three regions:
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T 〉 =

∫ xmin

0
dx

∫ kmax(x)

0
d2kT

∫ q+
max(kT )

0
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dx
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0
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+
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∫ kmax(x)

qmax
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∫ q+
max(kT )

q−
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d2q′I, (3)

where the integrand I is the same in all three regions and is given by:

I ≡ CRαs

2π2
L

λ

1
k2

T π
( µ2

(kT − q′)2 + µ2)2 2kT · (kT − q′)q′4

(4xE/L)2 + q′4
. (4)

The q′ integration limits are given by:

q±max ≡ kT cos(θkq)±
√

(qmax)2 − k2
T sin2(θkq), (5)

where θkq is the angle between the kT and q′ vectors, and xmin ≡ 
√

3µ/4E.
In order to make our job of analysing equation (2) easier, we will take kmax = 2xE. Since 

spin-1 radiative emissions are dominated by small x, we expect this to be a good approximation.
Numerical investigation of the three regions shows that the first two contributions grow with 

log2(E) while the third region grows only with log(E). The overall log2(E) growth is reassuring 
as it should match what we believe will be the leading double logarithmic energy dependence 
from the factorised approach as noted above.
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To derive analytic expressions from the first t wo i ntegrals o f e quation ( 3), i t’s u seful to 
approximate the upper bound on the q′ integrals as infinity. Numerical investigation shows that 
this approximation makes little difference in the overall results, especially as one increases in 
energy. Intuitively, one can understand this insensitivity as follows: the dominant contribution 
to the integrals comes when k ∼ q′, since these values minimise the denominator in equation 
(4). Physically, the greatest transverse momentum transfer to the parton from the radiation 
occurs when the parton has the smallest momentum transfer from the medium.

Once the k dependence is gone from the q integration, we may readily analytically integrate 
equation (4) over kT = |k| and θkq. (A trivial 2π falls out of the extra angular integral, as per 
usual.) The integration over x is less easy, but still analytically tractable; the expression is long 
and not insightful. Clever rearrangement of terms leads to analytically tractable integrands that 
numerical investigation show grow with energy and terms that do not. The final result, correct 
to leading logarithms in energy is:

∆〈p2
T 〉 = −CR

4
αs L

λ
µ2
[

log2
( 4E
µ2L

)
+ 5π2

12

]
. (6)

5. Conclusions
One can see from equation (6) that the leading double logarithmic term for the change in the
mean transverse momentum squared picked up by a parton emerging from nuclear collisions is
negative, which is to say that jets are narrowed by the presence of the QGP medium. Further,
the effect scales as one might expect. Higher energy jets are narrowed more by the QGP
than less high energy jets, and the narrowing increases with increasing pathlength and Debye
screening and for gluon vs. quark jets; i.e. the greater the quantum interference—from a greater
amount of induced radiation—the more the jet is narrowed. The leading double logarithmic
energy dependence is also what one expects if factorisation should hold for the system: elastic
energy loss leads to a logarithmic dependence on energy and DGLAP-like evolution will add an
additional log.

This qualitative prediction of the narrowing of jets is consistent with preliminary results from
the ALICE Collaboration at the LHC [24].

Interesting further work includes quantifying the differences between the energy loss approach
and the factorisation approach, and considering higher order effects such as from small path
lengths [25], small system sizes [26, 27], or the flow of the medium [28].
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